Properties

Label 92880.a.18._.C
Order $ 2^{3} \cdot 3 \cdot 5 \cdot 43 $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}\times C_{215}$
Order: \(5160\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 43 \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(2580\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 43 \)
Generators: $b^{1080}, b^{23220}, b^{30960}, b^{18576}, b^{11610}, a$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{215}\times D_{216}$
Order: \(92880\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 43 \)
Exponent: \(46440\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2612736\)\(\medspace = 2^{9} \cdot 3^{6} \cdot 7 \)
$\operatorname{Aut}(H)$ $D_5^4$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$9$
Möbius function not computed
Projective image not computed