Subgroup ($H$) information
Description: | $D_{12}\times C_{215}$ |
Order: | \(5160\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 43 \) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(2580\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 43 \) |
Generators: |
$b^{1080}, b^{23220}, b^{30960}, b^{18576}, b^{11610}, a$
|
Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $C_{215}\times D_{216}$ |
Order: | \(92880\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 43 \) |
Exponent: | \(46440\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 43 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | Group of order \(2612736\)\(\medspace = 2^{9} \cdot 3^{6} \cdot 7 \) |
$\operatorname{Aut}(H)$ | $D_5^4$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $9$ |
Möbius function | not computed |
Projective image | not computed |