Properties

Label 92880.a.120._.A
Order $ 2 \cdot 3^{2} \cdot 43 $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{774}$
Order: \(774\)\(\medspace = 2 \cdot 3^{2} \cdot 43 \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(774\)\(\medspace = 2 \cdot 3^{2} \cdot 43 \)
Generators: $b^{23220}, b^{10320}, b^{30960}, b^{1080}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_{215}\times D_{216}$
Order: \(92880\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \cdot 43 \)
Exponent: \(46440\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_5\times D_{12}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Automorphism Group: $C_4^2:D_6$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
Outer Automorphisms: $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2612736\)\(\medspace = 2^{9} \cdot 3^{6} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6\times C_{42}$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed