Properties

Label 928.38.928.a1.a1
Order $ 1 $
Index $ 2^{5} \cdot 29 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(928\)\(\medspace = 2^{5} \cdot 29 \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is characteristic (hence normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $C_{58}.C_4^2$
Order: \(928\)\(\medspace = 2^{5} \cdot 29 \)
Exponent: \(116\)\(\medspace = 2^{2} \cdot 29 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_{58}.C_4^2$
Order: \(928\)\(\medspace = 2^{5} \cdot 29 \)
Exponent: \(116\)\(\medspace = 2^{2} \cdot 29 \)
Automorphism Group: $C_{58}.(C_2^4\times C_{28}).C_2^2$
Outer Automorphisms: $C_{28}\times C_2^2\wr C_2$, of order \(896\)\(\medspace = 2^{7} \cdot 7 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{58}.(C_2^4\times C_{28}).C_2^2$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{58}.C_4^2$
Normalizer:$C_{58}.C_4^2$
Complements:$C_{58}.C_4^2$
Minimal over-subgroups:$C_{29}$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$$C_2$

Other information

Möbius function$0$
Projective image$C_{58}.C_4^2$