Subgroup ($H$) information
Description: | $C_2$ |
Order: | \(2\) |
Index: | \(464\)\(\medspace = 2^{4} \cdot 29 \) |
Exponent: | \(2\) |
Generators: |
$a^{2}b$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, simple, and rational.
Ambient group ($G$) information
Description: | $C_{58}.C_4^2$ |
Order: | \(928\)\(\medspace = 2^{5} \cdot 29 \) |
Exponent: | \(116\)\(\medspace = 2^{2} \cdot 29 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_{58}.D_4$ |
Order: | \(464\)\(\medspace = 2^{4} \cdot 29 \) |
Exponent: | \(116\)\(\medspace = 2^{2} \cdot 29 \) |
Automorphism Group: | $D_{29}:C_7.C_2^5$ |
Outer Automorphisms: | $C_2^2\times C_{28}$, of order \(112\)\(\medspace = 2^{4} \cdot 7 \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{58}.(C_2^4\times C_{28}).C_2^2$ |
$\operatorname{Aut}(H)$ | $C_1$, of order $1$ |
$\operatorname{res}(S)$ | $C_1$, of order $1$ |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(51968\)\(\medspace = 2^{8} \cdot 7 \cdot 29 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{58}.C_4^2$ | |||
Normalizer: | $C_{58}.C_4^2$ | |||
Minimal over-subgroups: | $C_{58}$ | $C_2^2$ | $C_2^2$ | $C_2^2$ |
Maximal under-subgroups: | $C_1$ | |||
Autjugate subgroups: | 928.38.464.d1.a1 |
Other information
Möbius function | $0$ |
Projective image | $C_{58}.D_4$ |