Properties

Label 9264.p.16.a1.a1
Order $ 3 \cdot 193 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_3$
Order: \(579\)\(\medspace = 3 \cdot 193 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(579\)\(\medspace = 3 \cdot 193 \)
Generators: $a^{2}b^{1158}, b^{8}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Ambient group ($G$) information

Description: $C_{1544}:C_6$
Order: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_2\times C_8$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{193}.C_{96}.C_2^4$
$\operatorname{Aut}(H)$ $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
$W$$C_{193}:C_6$, of order \(1158\)\(\medspace = 2 \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_8$
Normalizer:$C_{1544}:C_6$
Complements:$C_2\times C_8$
Minimal over-subgroups:$C_{193}:C_6$$C_{193}:C_6$$C_{193}:C_6$
Maximal under-subgroups:$C_{193}$$C_3$

Other information

Möbius function$0$
Projective image$C_{1544}:C_6$