Properties

Label 9240.a.5.a1.a1
Order $ 2^{3} \cdot 3 \cdot 7 \cdot 11 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times D_{84}$
Order: \(1848\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 11 \)
Index: \(5\)
Exponent: \(924\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \)
Generators: $a, b^{1320}, b^{420}, b^{2310}, b^{1155}, b^{1540}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{11}\times D_{420}$
Order: \(9240\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Exponent: \(4620\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4.C_4^2$, of order \(403200\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_{210}.C_6.C_2^4$
$W$$D_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_{22}$
Normalizer:$C_{11}\times D_{84}$
Normal closure:$C_{11}\times D_{420}$
Core:$C_{924}$
Minimal over-subgroups:$C_{11}\times D_{420}$
Maximal under-subgroups:$C_{924}$$C_{11}\times D_{42}$$C_{11}\times D_{42}$$C_{11}\times D_{28}$$C_{11}\times D_{12}$$D_{84}$

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-1$
Projective image$D_{210}$