Subgroup ($H$) information
| Description: | $D_7$ |
| Order: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Index: | \(65856\)\(\medspace = 2^{6} \cdot 3 \cdot 7^{3} \) |
| Exponent: | \(14\)\(\medspace = 2 \cdot 7 \) |
| Generators: |
$\langle(1,2,3,4,5,6,7)(8,13,11,9,14,12,10), (2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,26)(16,27)(17,28)(18,22)(19,23)(20,24)(21,25)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $D_7\wr S_4$ |
| Order: | \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \) |
| Exponent: | \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \) |
| Derived length: | $5$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \) |
| $\operatorname{Aut}(H)$ | $F_7$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \) |
| $W$ | $D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $1176$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $D_7\wr S_4$ |