Properties

Label 921984.a.32928.de1
Order $ 2^{2} \cdot 7 $
Index $ 2^{5} \cdot 3 \cdot 7^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{14}$
Order: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Index: \(32928\)\(\medspace = 2^{5} \cdot 3 \cdot 7^{3} \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(2,7)(3,6)(4,5)(9,14)(10,13)(11,12)(15,26)(16,27)(17,28)(18,22)(19,23)(20,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_7\wr S_4$
Order: \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$\operatorname{Aut}(H)$ $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
$W$$D_{14}$, of order \(28\)\(\medspace = 2^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$D_4\times D_{14}$
Normal closure:$C_7:D_7^3:S_4$
Core:$C_1$
Minimal over-subgroups:$C_7:D_{14}$$D_7^2$$C_7:D_4$$C_2\times D_{14}$$C_2\times D_{14}$$C_2\times D_{14}$$C_7:D_4$$D_{28}$$D_{28}$
Maximal under-subgroups:$C_{14}$$D_7$$C_2^2$

Other information

Number of subgroups in this autjugacy class$4116$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_7\wr S_4$