Properties

Label 921984.a.1.a1
Order $ 2^{7} \cdot 3 \cdot 7^{4} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_7\wr S_4$
Order: \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)
Index: $1$
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Generators: $\langle(1,28,18,13,2,26,16,8)(3,24,21,10,7,23,20,11)(4,22,19,12,6,25,15,9)(5,27,17,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $5$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_7\wr S_4$
Order: \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$\operatorname{Aut}(H)$ $C_7^4.C_2^3.(C_6\times S_4)$, of order \(2765952\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7^{4} \)
$W$$D_7\wr S_4$, of order \(921984\)\(\medspace = 2^{7} \cdot 3 \cdot 7^{4} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_7\wr S_4$
Complements:$C_1$
Maximal under-subgroups:$D_7\wr A_4$$C_7:D_7^3:S_4$$C_7^4:Q_8:S_4$$D_7\wr D_4$$C_7^3.A_4.C_2^2\times D_7$$C_2\wr S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$D_7\wr S_4$