Properties

Label 9216.ca.9.a1
Order $ 2^{10} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(1024\)\(\medspace = 2^{10} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: not computed
Generators: $\langle(1,6)(2,8)(3,4)(5,7), (5,7)(6,8)(12,14), (10,15)(12,14), (1,8)(2,6), (1,6) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: not computed
Derived length: not computed

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_4^2:C_2\wr C_4$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^5.C_2^4$
$\operatorname{Aut}(H)$ not computed
$W$$C_2^5.C_2^3$, of order \(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^6.C_2^3.C_2$
Normal closure:$A_4^2:C_2\wr C_4$
Core:$C_2^6:C_4$
Minimal over-subgroups:$A_4^2:C_2\wr C_4$
Maximal under-subgroups:$C_2^5.C_2^3.C_2$$C_2^3.C_2^5.C_2$$(C_2^3\times D_4).C_2^3$$C_2^3.(C_2^3\times C_4).C_2$$C_2^6.C_2^3$$C_2^7:C_4$$C_2^7.C_4$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^2:C_2^3:C_4$