Properties

Label 9216.by.64.R
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:S_4$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,7)(3,4)(9,13)(10,15)(11,12)(14,16), (2,7)(3,4), (2,3)(4,7), (2,4,3)(5,8,6), (4,7)(6,8)(11,12)(14,16), (3,4,7)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $A_4^2:C_2^4:C_4$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^5.C_2^5$
$\operatorname{Aut}(H)$ $C_2\times C_6^2:D_6$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$W$$C_3:S_4$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times D_4$
Normalizer:$C_6:S_4\times D_4$
Normal closure:$A_4^2:C_2^2$
Core:$C_2$
Minimal over-subgroups:$A_4^2:C_2^2$$C_2\times C_6:S_4$$C_2\times C_6:S_4$$C_2\times C_6:S_4$$C_{12}:S_4$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^3:(A_4^2:C_4)$