Properties

Label 9216.by.16.D
Order $ 2^{6} \cdot 3^{2} $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4^2:C_2^2$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(2,4,3)(5,8,6), (2,7)(3,4), (1,6)(5,8), (3,4,7), (1,8)(5,6), (2,7)(3,4)(9,13)(10,15)(11,12)(14,16), (2,3)(4,7), (4,7)(6,8)(11,12)(14,16)\rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $A_4^2:C_2^4:C_4$
Order: \(9216\)\(\medspace = 2^{10} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2^2:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.C_2^5.C_2^5$
$\operatorname{Aut}(H)$ $S_4^2:C_2^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$W$$A_4^2:C_4$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2\times D_4$
Normalizer:$A_4^2:C_2^4:C_4$
Minimal over-subgroups:$A_4^2:C_2^3$$A_4^2:C_2^3$$A_4^2:C_2^3$$C_4\times \PSOPlus(4,3)$
Maximal under-subgroups:$C_2\times A_4^2$$\PSOPlus(4,3)$$C_2\times \GL(2,\mathbb{Z}/4)$$C_2^3:S_4$$C_6:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^3:(A_4^2:C_4)$