Properties

Label 90720.g.945.b1.a1
Order $ 2^{5} \cdot 3 $
Index $ 3^{3} \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3\times A_4$
Order: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Index: \(945\)\(\medspace = 3^{3} \cdot 5 \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(11,12)(13,14), (1,4)(3,6)(5,7)(8,9), (1,8)(3,5)(4,9)(6,7), (1,3,8)(4,6,9)(11,14)(12,13), (1,3)(4,6)(5,8)(7,9)(11,14)(12,13), (11,13)(12,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $S_4\times \GL(3,2)$, of order \(4032\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \)
$W$$C_3\times A_4$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2\times A_4^2$
Normal closure:$A_5\times {}^2G(2,3)$
Core:$C_1$
Minimal over-subgroups:$C_2\times F_8:C_6$$C_2\times A_4^2$
Maximal under-subgroups:$C_2^2\times A_4$$C_2^2\times A_4$$C_2^2\times A_4$$C_2^5$$C_2^2\times C_6$

Other information

Number of subgroups in this conjugacy class$315$
Möbius function$0$
Projective image$A_5\times {}^2G(2,3)$