Properties

Label 90720.g.135.b1.a1
Order $ 2^{5} \cdot 3 \cdot 7 $
Index $ 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times F_8:C_6$
Order: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Index: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(11,12)(13,14), (1,4)(3,6)(5,7)(8,9), (1,6,4,5,3,8,9), (1,8)(3,5)(4,9)(6,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_8:C_3\times S_3$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$W$$F_8:C_3^2$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$A_4\times F_8:C_3$
Normal closure:$A_5\times {}^2G(2,3)$
Core:$C_1$
Minimal over-subgroups:$C_2^2\times {}^2G(2,3)$$A_4\times F_8:C_3$
Maximal under-subgroups:$F_8:C_6$$C_2^2\times F_8$$C_2^3\times A_4$$C_{14}:C_6$

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$0$
Projective image$A_5\times {}^2G(2,3)$