Properties

Label 90720.g.672.a1.a1
Order $ 3^{3} \cdot 5 $
Index $ 2^{5} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9:C_{15}$
Order: \(135\)\(\medspace = 3^{3} \cdot 5 \)
Index: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(45\)\(\medspace = 3^{2} \cdot 5 \)
Generators: $\langle(10,12,13,14,11), (1,3,8,2,5,9,6,7,4), (1,2,6)(3,5,7)(4,8,9), (1,6,2)(3,5,7)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_4\times C_3^2:S_3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
$W$$C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{15}$
Normalizer:$D_{45}:C_6$
Normal closure:$A_5\times {}^2G(2,3)$
Core:$C_1$
Minimal over-subgroups:$C_{45}:C_6$$C_9:C_{30}$$C_{45}:C_6$
Maximal under-subgroups:$C_3\times C_{15}$$C_{45}$$C_{45}$$C_9:C_3$

Other information

Number of subgroups in this conjugacy class$168$
Möbius function$0$
Projective image$A_5\times {}^2G(2,3)$