Properties

Label 90720.g.63.a1.a1
Order $ 2^{5} \cdot 3^{2} \cdot 5 $
Index $ 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:\GL(2,4)$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Index: \(63\)\(\medspace = 3^{2} \cdot 7 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(10,11)(12,14), (1,3)(2,8)(4,5)(6,9), (1,8)(2,3)(4,6)(5,9), (1,5)(2,6)(3,4)(8,9), (1,2,4)(3,8,5), (1,9)(2,4)(3,6)(5,8)(10,12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $A_5\times {}^2G(2,3)$
Order: \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \)
Exponent: \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $S_4\times S_5$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$W$$A_4\times A_5$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2^3:\GL(2,4)$
Normal closure:$A_5\times {}^2G(2,3)$
Core:$A_5$
Minimal over-subgroups:$F_8:\GL(2,4)$
Maximal under-subgroups:$A_4\times A_5$$C_2^3\times A_5$$C_6\times A_5$$C_2\times A_4^2$$A_4\times D_{10}$$A_4\times D_6$

Other information

Number of subgroups in this conjugacy class$63$
Möbius function$0$
Projective image$A_5\times {}^2G(2,3)$