Subgroup ($H$) information
| Description: | $C_5\times \SL(2,8)$ |
| Order: | \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Generators: |
$\langle(10,14,13,11,12), (1,2,4)(3,5,8)(6,9,7)(10,12,11,13,14), (1,2,5)(3,9,4)(6,8,7)(10,13,12,14,11)\rangle$
|
| Derived length: | $1$ |
The subgroup is nonabelian, an A-group, and nonsolvable.
Ambient group ($G$) information
| Description: | $A_5\times {}^2G(2,3)$ |
| Order: | \(90720\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 5 \cdot 7 \) |
| Exponent: | \(630\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
| Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_5\times {}^2G(2,3)$, of order \(181440\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 5 \cdot 7 \) |
| $\operatorname{Aut}(H)$ | $\SL(2,8):C_{12}$, of order \(6048\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 7 \) |
| $W$ | $\SL(2,8):C_6$, of order \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \) |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $6$ |
| Möbius function | $0$ |
| Projective image | $A_5\times {}^2G(2,3)$ |