Properties

Label 9072.b.6.b1.a1
Order $ 2^{3} \cdot 3^{3} \cdot 7 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:${}^2G(2,3)$
Order: \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Generators: $\langle(1,9,8)(2,3,7)(4,6,5), (1,3,2)(4,9,5)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, almost simple, and nonsolvable.

Ambient group ($G$) information

Description: $S_3\times {}^2G(2,3)$
Order: \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
$\operatorname{Aut}(H)$ ${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
$W$${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)

Related subgroups

Centralizer:$S_3$
Normalizer:$S_3\times {}^2G(2,3)$
Complements:$S_3$ $S_3$ $S_3$
Minimal over-subgroups:$C_3\times {}^2G(2,3)$$\SL(2,8):C_6$
Maximal under-subgroups:$\SL(2,8)$$F_8:C_3$$C_9:C_6$$F_7$

Other information

Möbius function$3$
Projective image$S_3\times {}^2G(2,3)$