Properties

Label 9072.b.216.b1.a1
Order $ 2 \cdot 3 \cdot 7 $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_7$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(11,12), (2,7,6,5,8,9,4), (10,11,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $S_3\times {}^2G(2,3)$
Order: \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_7$
Normalizer:$S_3\times F_7$
Normal closure:$S_3\times \SL(2,8)$
Core:$S_3$
Minimal over-subgroups:$S_3\times F_8$$C_{21}:C_6$$S_3\times D_7$
Maximal under-subgroups:$C_{21}$$C_{14}$$S_3$

Other information

Number of subgroups in this conjugacy class$36$
Möbius function$-2$
Projective image$S_3\times {}^2G(2,3)$