Properties

Label 9000.w.30.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5^{2} $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:D_{10}$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(16,18,17), (2,7,9,10,11)(3,12,4,8,15), (1,13,5,6,14)(2,15)(3,11)(4,9)(7,8)(10,12)(17,18), (1,14,6,5,13), (3,15)(7,11)(8,12)(9,10)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $(C_5^2\times C_{15}):S_4$
Order: \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_{15}:C_4^2$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$W$$S_3\times D_5$, of order \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_{15}:D_{10}$
Normal closure:$(C_5^2\times C_{15}):S_4$
Core:$C_3$
Minimal over-subgroups:$C_{15}:D_5^2$
Maximal under-subgroups:$D_5\times C_{15}$$S_3\times C_5^2$$C_5\times D_{15}$$C_5\times D_{10}$$S_3\times C_{10}$$S_3\times D_5$

Other information

Number of subgroups in this conjugacy class$30$
Möbius function$0$
Projective image$(C_5^2\times C_{15}):S_4$