Properties

Label 9000.w.3.b1.a1
Order $ 2^{3} \cdot 3 \cdot 5^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:S_4$
Order: \(3000\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{3} \)
Index: \(3\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $\langle(2,7,9,10,11)(3,8,12,15,4), (2,4,10,15)(3,7,12,9)(5,6)(8,11)(13,14)(17,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_5^2\times C_{15}):S_4$
Order: \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_5^3.D_6$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)
$W$$C_5^3:S_4$, of order \(3000\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_5^3:S_4$
Normal closure:$(C_5^2\times C_{15}):S_4$
Core:$C_5^3:A_4$
Minimal over-subgroups:$(C_5^2\times C_{15}):S_4$
Maximal under-subgroups:$C_5^3:A_4$$C_5^3:D_4$$C_5\wr S_3$$S_4$
Autjugate subgroups:9000.w.3.b1.b19000.w.3.b1.c1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$(C_5^2\times C_{15}):S_4$