Properties

Label 900.83.5.a1.e1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}:C_{12}$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(5\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a, a^{2}, b^{10}, c^{10}, b^{3}c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2:C_4$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times S_3\times C_5^2:C_4.S_5$
$\operatorname{Aut}(H)$ $C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(20\)\(\medspace = 2^{2} \cdot 5 \)
$W$$D_{15}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{15}:C_{12}$
Normal closure:$C_{15}^2:C_4$
Core:$C_3\times C_{30}$
Minimal over-subgroups:$C_{15}^2:C_4$
Maximal under-subgroups:$C_3\times C_{30}$$C_5:C_{12}$$C_{15}:C_4$$C_3:C_{12}$
Autjugate subgroups:900.83.5.a1.a1900.83.5.a1.b1900.83.5.a1.c1900.83.5.a1.d1900.83.5.a1.f1

Other information

Number of subgroups in this conjugacy class$5$
Möbius function$-1$
Projective image$C_5:D_{15}$