Properties

Label 900.149.3.a1
Order $ 2^{2} \cdot 3 \cdot 5^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_{30}$
Order: \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \)
Index: \(3\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a, b^{10}, b^{3}, c^{15}, c^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{15}:D_{30}$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \AGL(2,3)\times C_5^2:C_4.S_5$
$\operatorname{Aut}(H)$ $C_2\times S_3\times C_5^2:C_4.S_5$
$\card{\operatorname{res}(S)}$\(144000\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_5:D_{15}$, of order \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_5:D_{30}$
Normal closure:$C_{15}:D_{30}$
Core:$C_5\times C_{30}$
Minimal over-subgroups:$C_{15}:D_{30}$
Maximal under-subgroups:$C_5\times C_{30}$$C_5:D_{15}$$C_5:D_{10}$$D_{30}$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-1$
Projective image$C_{15}:D_{15}$