Subgroup ($H$) information
| Description: | $S_3$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Index: | \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Generators: |
$ac^{5}, b^{10}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Ambient group ($G$) information
| Description: | $C_3^2:C_{10}^2$ |
| Order: | \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times \GL(2,5)\times \AGL(2,3)$ |
| $\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\operatorname{res}(S)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) |
| $W$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
Related subgroups
| Centralizer: | $C_5\times C_{10}$ | ||
| Normalizer: | $D_6\times C_5^2$ | ||
| Normal closure: | $C_3:S_3$ | ||
| Core: | $C_3$ | ||
| Minimal over-subgroups: | $C_5\times S_3$ | $C_3:S_3$ | $D_6$ |
| Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
| Number of subgroups in this autjugacy class | $24$ |
| Number of conjugacy classes in this autjugacy class | $8$ |
| Möbius function | $5$ |
| Projective image | $C_3^2:C_{10}^2$ |