Properties

Label 900.147.150.b1
Order $ 2 \cdot 3 $
Index $ 2 \cdot 3 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ac^{5}, b^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Ambient group ($G$) information

Description: $C_3^2:C_{10}^2$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \GL(2,5)\times \AGL(2,3)$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_5\times C_{10}$
Normalizer:$D_6\times C_5^2$
Normal closure:$C_3:S_3$
Core:$C_3$
Minimal over-subgroups:$C_5\times S_3$$C_3:S_3$$D_6$
Maximal under-subgroups:$C_3$$C_2$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$5$
Projective image$C_3^2:C_{10}^2$