Subgroup ($H$) information
| Description: | $C_{15}^2:C_2$ |
| Order: | \(450\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \) |
| Index: | \(2\) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$a, d^{10}, c^{3}, c^{10}, d^{3}$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_{15}^2:C_2^2$ |
| Order: | \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $C_2$ |
| Order: | \(2\) |
| Exponent: | \(2\) |
| Automorphism Group: | $C_1$, of order $1$ |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:S_3.C_{10}^2.C_{12}.C_4.C_2^2$ |
| $\operatorname{Aut}(H)$ | $\GL(2,3)\times C_5^2:C_4.S_5$ |
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(38400\)\(\medspace = 2^{9} \cdot 3 \cdot 5^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
| $W$ | $D_5^2$, of order \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
Related subgroups
| Centralizer: | $C_3^2$ | |||
| Normalizer: | $C_{15}^2:C_2^2$ | |||
| Complements: | $C_2$ | |||
| Minimal over-subgroups: | $C_{15}^2:C_2^2$ | |||
| Maximal under-subgroups: | $C_{15}^2$ | $C_{15}:D_5$ | $C_3^2\times D_5$ | $C_3^2\times D_5$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-1$ |
| Projective image | $C_{15}^2:C_2^2$ |