Subgroup ($H$) information
| Description: | $C_3^2$ |
| Order: | \(9\)\(\medspace = 3^{2} \) |
| Index: | \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
| Exponent: | \(3\) |
| Generators: |
$c^{10}, d^{10}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_{15}^2:C_2^2$ |
| Order: | \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Quotient group ($Q$) structure
| Description: | $D_5^2$ |
| Order: | \(100\)\(\medspace = 2^{2} \cdot 5^{2} \) |
| Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
| Automorphism Group: | $F_5\wr C_2$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \) |
| Outer Automorphisms: | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:S_3.C_{10}^2.C_{12}.C_4.C_2^2$ |
| $\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(7200\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
| $W$ | $C_2$, of order \(2\) |
Related subgroups
| Centralizer: | $C_{15}^2:C_2$ | |||
| Normalizer: | $C_{15}^2:C_2^2$ | |||
| Complements: | $D_5^2$ | |||
| Minimal over-subgroups: | $C_3\times C_{15}$ | $C_3\times C_{15}$ | $C_3\times C_6$ | $C_3:S_3$ |
| Maximal under-subgroups: | $C_3$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $50$ |
| Projective image | $C_{15}^2:C_2^2$ |