Properties

Label 90.3.9.a1.a1
Order $ 2 \cdot 5 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a, b^{9}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $D_{45}$
Order: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_{45}:C_{12}$, of order \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\operatorname{res}(S)$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_5$
Normal closure:$D_{45}$
Core:$C_5$
Minimal over-subgroups:$D_{15}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this conjugacy class$9$
Möbius function$0$
Projective image$D_{45}$