Subgroup ($H$) information
Description: | $D_5$ |
Order: | \(10\)\(\medspace = 2 \cdot 5 \) |
Index: | \(9\)\(\medspace = 3^{2} \) |
Exponent: | \(10\)\(\medspace = 2 \cdot 5 \) |
Generators: |
$a, b^{9}$
|
Derived length: | $2$ |
The subgroup is nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Ambient group ($G$) information
Description: | $D_{45}$ |
Order: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
Exponent: | \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_{45}:C_{12}$, of order \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
$\operatorname{res}(S)$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(6\)\(\medspace = 2 \cdot 3 \) |
$W$ | $D_5$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
Related subgroups
Centralizer: | $C_1$ | |
Normalizer: | $D_5$ | |
Normal closure: | $D_{45}$ | |
Core: | $C_5$ | |
Minimal over-subgroups: | $D_{15}$ | |
Maximal under-subgroups: | $C_5$ | $C_2$ |
Other information
Number of subgroups in this conjugacy class | $9$ |
Möbius function | $0$ |
Projective image | $D_{45}$ |