Properties

Label 8957952.v.48.F
Order $ 2^{8} \cdot 3^{6} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(186624\)\(\medspace = 2^{8} \cdot 3^{6} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: not computed
Generators: $\langle(31,34,35)(32,33,36), (1,3,6)(2,4,5)(13,16,18)(14,15,17)(19,24,22)(20,23,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is normal, nonabelian, and solvable. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^6.(C_2^9.S_4)$
Order: \(8957952\)\(\medspace = 2^{12} \cdot 3^{7} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(573308928\)\(\medspace = 2^{18} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(1119744\)\(\medspace = 2^{9} \cdot 3^{7} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_3^6.(C_2^9.S_4)$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed