Properties

Label 8957952.v
Order \( 2^{12} \cdot 3^{7} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{7} \)
$\card{\mathrm{Out}(G)}$ \( 2^{7} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,8,21,6,10,20)(2,7,22,5,9,19)(3,12,23)(4,11,24)(13,34,26,14,33,25)(15,32,29,16,31,30)(17,36,27,18,35,28), (1,29,32,9,4,28,35,8,6,25,33,11,2,30,31,10,3,27,36,7,5,26,34,12)(13,20,15,22)(14,19,16,21)(17,24,18,23), (1,2)(3,5)(4,6)(13,16)(14,15)(21,23)(22,24)(25,28,29,26,27,30)(31,36)(32,35)(33,34) >;
 
Copy content gap:G := Group( (1,8,21,6,10,20)(2,7,22,5,9,19)(3,12,23)(4,11,24)(13,34,26,14,33,25)(15,32,29,16,31,30)(17,36,27,18,35,28), (1,29,32,9,4,28,35,8,6,25,33,11,2,30,31,10,3,27,36,7,5,26,34,12)(13,20,15,22)(14,19,16,21)(17,24,18,23), (1,2)(3,5)(4,6)(13,16)(14,15)(21,23)(22,24)(25,28,29,26,27,30)(31,36)(32,35)(33,34) );
 
Copy content sage:G = PermutationGroup(['(1,8,21,6,10,20)(2,7,22,5,9,19)(3,12,23)(4,11,24)(13,34,26,14,33,25)(15,32,29,16,31,30)(17,36,27,18,35,28)', '(1,29,32,9,4,28,35,8,6,25,33,11,2,30,31,10,3,27,36,7,5,26,34,12)(13,20,15,22)(14,19,16,21)(17,24,18,23)', '(1,2)(3,5)(4,6)(13,16)(14,15)(21,23)(22,24)(25,28,29,26,27,30)(31,36)(32,35)(33,34)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(757333144795399378329583135816179298483741425729881670695434625247184652450982008864597757924255538505414263031924513992308502568829106598194660110110458522242413503060990380454801937865289331128661401791801831910479755879724760221986764410268370200376869177270421959683375785721129637197042709624441299786549794902860534788979403136398707411951268565053192841931878742028381299599933013879057355146792625298768417751056048391090383264886504975494544168216993255754014039929069265310516190669544059188120571997240895979182033304792673911624277656729440246603737069617995226153867215662083912223141488765876279569094305918720914520992243519746038861852450352007419963944617089829376988156890378143696393920081097101638162238870039836796838162517888233193543967311406987201538206110736191576891596403980263239247774256567863323110973156118887655947453194480375550537783972408914341357432381025879371,8957952)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.17; k = G.19;
 

Group information

Description:$C_3^6.(C_2^9.S_4)$
Order: \(8957952\)\(\medspace = 2^{12} \cdot 3^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(573308928\)\(\medspace = 2^{18} \cdot 3^{7} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 51903 42200 772416 1362600 248832 331776 3286656 1990656 870912 8957952
Conjugacy classes   1 63 14 68 602 4 5 280 23 12 1072
Divisions 1 63 14 68 542 4 5 236 23 8 964
Autjugacy classes 1 29 14 21 279 2 3 91 7 4 451

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid c^{2}=e^{2}=g^{6}=h^{6}=i^{12}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([19, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 58304616, 21962253, 96, 492462674, 14588392, 453874131, 227725054, 113862329, 29887384, 397509473, 40541577, 47278711, 270, 531090437, 156017688, 43382059, 14183524, 1039270518, 243846481, 263011268, 1992422, 16547695, 133892551, 348269114, 307901733, 18913728, 12803955, 1138886, 5302185, 444, 1139689016, 442554867, 96333238, 23877156, 21276607, 5621918, 14011, 478644969, 678067468, 249053567, 50047605, 23643704, 6632643, 5272642, 7571, 560, 485388298, 642850589, 69341232, 274294, 10156, 5159, 1748416187, 334800246, 274654093, 73609431, 870173, 8807328, 20683, 7022, 676, 823280652, 287484319, 194865266, 31015384, 498078, 6864769, 17948, 6111, 1684080061, 106290440, 101813679, 34014022, 38150873, 33324588, 1594550, 143805, 737536, 241218, 58495, 792, 2206761854, 1064529753, 136912912, 4924890, 3324387, 307966, 102785, 850, 933903, 5136418, 481185845, 4202587, 1576084, 262823, 87738, 1939876000, 964976747, 622888758, 33488732, 2790869, 2093208, 697867, 19643, 966, 1838609, 4990500, 255301687, 28366941, 591126, 1773097, 591164, 16680, 1142816274, 179656741, 2633912, 22457220, 5952319, 5614442, 1871613, 52249]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.2, G.4, G.5, G.7, G.8, G.10, G.12, G.14, G.17, G.19]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "i4", "j", "j2", "k"]);
 
Copy content gap:G := PcGroupCode(757333144795399378329583135816179298483741425729881670695434625247184652450982008864597757924255538505414263031924513992308502568829106598194660110110458522242413503060990380454801937865289331128661401791801831910479755879724760221986764410268370200376869177270421959683375785721129637197042709624441299786549794902860534788979403136398707411951268565053192841931878742028381299599933013879057355146792625298768417751056048391090383264886504975494544168216993255754014039929069265310516190669544059188120571997240895979182033304792673911624277656729440246603737069617995226153867215662083912223141488765876279569094305918720914520992243519746038861852450352007419963944617089829376988156890378143696393920081097101638162238870039836796838162517888233193543967311406987201538206110736191576891596403980263239247774256567863323110973156118887655947453194480375550537783972408914341357432381025879371,8957952); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.12; i := G.14; j := G.17; k := G.19;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(757333144795399378329583135816179298483741425729881670695434625247184652450982008864597757924255538505414263031924513992308502568829106598194660110110458522242413503060990380454801937865289331128661401791801831910479755879724760221986764410268370200376869177270421959683375785721129637197042709624441299786549794902860534788979403136398707411951268565053192841931878742028381299599933013879057355146792625298768417751056048391090383264886504975494544168216993255754014039929069265310516190669544059188120571997240895979182033304792673911624277656729440246603737069617995226153867215662083912223141488765876279569094305918720914520992243519746038861852450352007419963944617089829376988156890378143696393920081097101638162238870039836796838162517888233193543967311406987201538206110736191576891596403980263239247774256567863323110973156118887655947453194480375550537783972408914341357432381025879371,8957952)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.17; k = G.19;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(757333144795399378329583135816179298483741425729881670695434625247184652450982008864597757924255538505414263031924513992308502568829106598194660110110458522242413503060990380454801937865289331128661401791801831910479755879724760221986764410268370200376869177270421959683375785721129637197042709624441299786549794902860534788979403136398707411951268565053192841931878742028381299599933013879057355146792625298768417751056048391090383264886504975494544168216993255754014039929069265310516190669544059188120571997240895979182033304792673911624277656729440246603737069617995226153867215662083912223141488765876279569094305918720914520992243519746038861852450352007419963944617089829376988156890378143696393920081097101638162238870039836796838162517888233193543967311406987201538206110736191576891596403980263239247774256567863323110973156118887655947453194480375550537783972408914341357432381025879371,8957952)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.14; j = G.17; k = G.19;
 
Permutation group:Degree $36$ $\langle(1,8,21,6,10,20)(2,7,22,5,9,19)(3,12,23)(4,11,24)(13,34,26,14,33,25)(15,32,29,16,31,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,8,21,6,10,20)(2,7,22,5,9,19)(3,12,23)(4,11,24)(13,34,26,14,33,25)(15,32,29,16,31,30)(17,36,27,18,35,28), (1,29,32,9,4,28,35,8,6,25,33,11,2,30,31,10,3,27,36,7,5,26,34,12)(13,20,15,22)(14,19,16,21)(17,24,18,23), (1,2)(3,5)(4,6)(13,16)(14,15)(21,23)(22,24)(25,28,29,26,27,30)(31,36)(32,35)(33,34) >;
 
Copy content gap:G := Group( (1,8,21,6,10,20)(2,7,22,5,9,19)(3,12,23)(4,11,24)(13,34,26,14,33,25)(15,32,29,16,31,30)(17,36,27,18,35,28), (1,29,32,9,4,28,35,8,6,25,33,11,2,30,31,10,3,27,36,7,5,26,34,12)(13,20,15,22)(14,19,16,21)(17,24,18,23), (1,2)(3,5)(4,6)(13,16)(14,15)(21,23)(22,24)(25,28,29,26,27,30)(31,36)(32,35)(33,34) );
 
Copy content sage:G = PermutationGroup(['(1,8,21,6,10,20)(2,7,22,5,9,19)(3,12,23)(4,11,24)(13,34,26,14,33,25)(15,32,29,16,31,30)(17,36,27,18,35,28)', '(1,29,32,9,4,28,35,8,6,25,33,11,2,30,31,10,3,27,36,7,5,26,34,12)(13,20,15,22)(14,19,16,21)(17,24,18,23)', '(1,2)(3,5)(4,6)(13,16)(14,15)(21,23)(22,24)(25,28,29,26,27,30)(31,36)(32,35)(33,34)'])
 
Transitive group: 36T58551 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_6^6$ . $(C_2^3:S_4)$ (2) $C_3^6$ . $(C_2^9.S_4)$ $(C_3^5:D_6)$ . $(C_2^7:S_4)$ $(C_3^6.(C_2^8.S_4))$ . $C_2$ all 40

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 82 normal subgroups (38 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_3^6.C_2^6.S_4.C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^6.C_2^5.C_2^4.C_3$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^3$ $G/\Phi \simeq$ $C_3^6.C_2^6:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_6^6$ $G/\operatorname{Fit} \simeq$ $C_2^3:S_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^6.(C_2^9.S_4)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^3\times C_6^3$ $G/\operatorname{soc} \simeq$ $C_2^6:S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2.C_2^6.C_2^5$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2\wr C_3$

Subgroup diagram and profile

Series

Derived series $C_3^6.(C_2^9.S_4)$ $\rhd$ $C_3^6.C_2^5.C_2^4.C_3$ $\rhd$ $C_3^6.C_2^6.C_2^3$ $\rhd$ $C_3^3\times C_6^3$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^6.(C_2^9.S_4)$ $\rhd$ $C_3^6.(C_2^9.A_4)$ $\rhd$ $C_3^6.(C_2^8.A_4)$ $\rhd$ $C_3^6.C_2^5.C_2^4.C_3$ $\rhd$ $C_3^6.C_2^6.C_2^3$ $\rhd$ $C_2^2\times C_3^6.C_2^5$ $\rhd$ $C_2^2\times C_3^6.C_2^3$ $\rhd$ $C_3^3\times C_6^3$ $\rhd$ $C_3^4\times C_6^2$ $\rhd$ $C_3^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^6.(C_2^9.S_4)$ $\rhd$ $C_3^6.C_2^5.C_2^4.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1072 \times 1072$ character table is not available for this group.

Rational character table

The $964 \times 964$ rational character table is not available for this group.