Properties

Label 889344.a.8.D
Order $ 2^{6} \cdot 3^{2} \cdot 193 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1158}:C_{96}$
Order: \(111168\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 193 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(18528\)\(\medspace = 2^{5} \cdot 3 \cdot 193 \)
Generators: $b^{24}, b^{1544}, b^{2316}, a^{18}b^{363}, a^{64}, a^{96}b^{2088}, a^{36}b^{2598}, a^{72}b^{1932}, a^{144}b^{2232}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_{24}\times F_{193}$
Order: \(889344\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{2316}.C_{96}.C_2^5$
$\operatorname{Aut}(H)$ $C_{579}.C_{96}.C_2^3$
$W$$F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)

Related subgroups

Centralizer:$C_{24}$
Normalizer:$C_{24}\times F_{193}$
Minimal over-subgroups:$C_{2316}:C_{96}$
Maximal under-subgroups:$C_{1158}:C_{48}$$C_{579}:C_{96}$$C_{1158}:C_{32}$$C_{386}:C_{96}$$C_6\times C_{96}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_4\times F_{193}$