Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(22\)\(\medspace = 2 \cdot 11 \) |
Exponent: | \(2\) |
Generators: |
$ab, b^{22}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
Description: | $D_{44}$ |
Order: | \(88\)\(\medspace = 2^{3} \cdot 11 \) |
Exponent: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_4\times F_{11}$, of order \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \) |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\operatorname{res}(S)$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(20\)\(\medspace = 2^{2} \cdot 5 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_2^2$ | |
Normalizer: | $D_4$ | |
Normal closure: | $D_{22}$ | |
Core: | $C_2$ | |
Minimal over-subgroups: | $D_{22}$ | $D_4$ |
Maximal under-subgroups: | $C_2$ | $C_2$ |
Autjugate subgroups: | 88.5.22.b1.a1 |
Other information
Number of subgroups in this conjugacy class | $11$ |
Möbius function | $1$ |
Projective image | $D_{22}$ |