Properties

Label 878460.a.11.B
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} $
Index $ 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}\times C_{11}\wr S_3$
Order: \(79860\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{3} \)
Index: \(11\)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 31 & 86 \\ 62 & 90 \end{array}\right), \left(\begin{array}{rr} 45 & 33 \\ 77 & 78 \end{array}\right), \left(\begin{array}{rr} 81 & 0 \\ 0 & 81 \end{array}\right), \left(\begin{array}{rr} 89 & 0 \\ 0 & 89 \end{array}\right), \left(\begin{array}{rr} 120 & 0 \\ 0 & 120 \end{array}\right), \left(\begin{array}{rr} 111 & 0 \\ 110 & 12 \end{array}\right), \left(\begin{array}{rr} 66 & 43 \\ 111 & 54 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_5\times C_{11}^4:D_6$
Order: \(878460\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{4} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian, solvable, and an A-group. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_3.C_5^3.C_4.C_2^5$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{15}.C_{20}.C_2^4$
$W$$C_{11}^2:S_3$, of order \(726\)\(\medspace = 2 \cdot 3 \cdot 11^{2} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_{10}\times C_{11}\wr S_3$
Normal closure:$C_5\times C_{11}^4:D_6$
Core:$C_{11}^2:C_{330}$

Other information

Number of subgroups in this autjugacy class$11$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_{11}^2:D_{33}$