Properties

Label 87780.b.418.b1.b1
Order $ 2 \cdot 3 \cdot 5 \cdot 7 $
Index $ 2 \cdot 11 \cdot 19 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{105}$
Order: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Index: \(418\)\(\medspace = 2 \cdot 11 \cdot 19 \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Generators: $ab^{1045}, b^{17556}, b^{37620}, b^{14630}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{209}\times D_{210}$
Order: \(87780\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Exponent: \(43890\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{418}$
Order: \(418\)\(\medspace = 2 \cdot 11 \cdot 19 \)
Exponent: \(418\)\(\medspace = 2 \cdot 11 \cdot 19 \)
Automorphism Group: $C_2\times C_{90}$, of order \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Outer Automorphisms: $C_2\times C_{90}$, of order \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11,19$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{90}\times F_5\times S_3\times F_7$
$\operatorname{Aut}(H)$ $S_3\times F_5\times F_7$, of order \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$D_{105}$, of order \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_{418}$
Normalizer:$C_{209}\times D_{210}$
Complements:$C_{418}$ $C_{418}$
Minimal over-subgroups:$C_{19}\times D_{105}$$C_{11}\times D_{105}$$D_{210}$
Maximal under-subgroups:$C_{105}$$D_{35}$$D_{21}$$D_{15}$
Autjugate subgroups:87780.b.418.b1.a1

Other information

Möbius function$-1$
Projective image$C_{209}\times D_{210}$