Properties

Label 8748.fn.3.b1.a1
Order $ 2^{2} \cdot 3^{6} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
Index: \(3\)
Exponent: not computed
Generators: $a^{3}, ce^{2}f, def, b^{9}, b^{6}f, f, e, a^{2}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is maximal, nonabelian, and supersolvable (hence solvable and monomial). Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^5.S_3^2$
Order: \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^4.C_2^2$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_3^4.(C_6\times S_3)$
Normal closure:$C_3^5.S_3^2$
Core:$C_3^5:S_3$
Minimal over-subgroups:$C_3^5.S_3^2$
Maximal under-subgroups:$C_3^5:S_3$$C_3^5:S_3$$C_3^5:C_6$$C_3^3:S_3^2$$C_3^3:S_3^2$$C_3^4:D_6$$C_3^3:S_3^2$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_3^5.S_3^2$