Properties

Label 8748.fn.27.f1.a1
Order $ 2^{2} \cdot 3^{4} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\wr C_2^2$
Order: \(324\)\(\medspace = 2^{2} \cdot 3^{4} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{3}ce^{2}f, e, def^{2}, b^{9}, a^{2}f^{2}, b^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^5.S_3^2$
Order: \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 27T782.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3^4.C_2^2$
$\operatorname{Aut}(H)$ $S_3^3:D_6$, of order \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
$W$$C_3:S_3^2$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_3\wr C_2^2$
Normal closure:$C_3^5.S_3^2$
Core:$C_1$
Minimal over-subgroups:$C_3^3:S_3^2$
Maximal under-subgroups:$C_3^2\wr C_2$$C_3^2\wr C_2$$C_3^2\wr C_2$$C_3\times S_3^2$$C_3\times S_3^2$$C_3\times S_3^2$$C_3:S_3^2$
Autjugate subgroups:8748.fn.27.f1.b18748.fn.27.f1.c1

Other information

Number of subgroups in this conjugacy class$27$
Möbius function$0$
Projective image$C_3^5.S_3^2$