Properties

Label 86400.cb.90.g1.a1
Order $ 2^{6} \cdot 3 \cdot 5 $
Index $ 2 \cdot 3^{2} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_5:\SD_{16}$
Order: \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)
Index: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(6,15)(7,8)(10,13)(11,14), (6,15)(9,12)(10,11)(13,14), (1,5)(6,11,8,13,15,14,7,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and nonsolvable.

Ambient group ($G$) information

Description: $S_6:S_5$
Order: \(86400\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times S_6:C_2$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_2\times D_4\times S_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$W$$C_2^3:S_5$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$(C_2\times D_4):S_5$
Normal closure:$A_6.S_5$
Core:$A_5$
Minimal over-subgroups:$A_6.S_5$$(C_2\times D_4):S_5$
Maximal under-subgroups:$A_5:Q_8$$A_5:C_8$$D_4\times A_5$$A_4:\SD_{16}$$D_{20}:C_4$$S_3\times \SD_{16}$

Other information

Number of subgroups in this conjugacy class$45$
Möbius function$1$
Projective image$S_6:S_5$