Properties

Label 86400.cb.2.c1.a1
Order $ 2^{6} \cdot 3^{3} \cdot 5^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_6.S_5$
Order: \(43200\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{2} \)
Index: \(2\)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\langle(1,4)(7,8,9,13)(11,14,12,15), (1,2,3,4,5)(6,8)(7,10)(9,11)(13,15)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $S_6:S_5$
Order: \(86400\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$S_5\times S_6:C_2$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $S_5\times S_6:C_2$, of order \(172800\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5^{2} \)
$W$$S_6:S_5$, of order \(86400\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_6:S_5$
Complements:$C_2$ $C_2$ $C_2$
Minimal over-subgroups:$S_6:S_5$
Maximal under-subgroups:$A_5\times A_6$$A_6.S_4$$A_6:F_5$$A_6.D_6$$A_5:\PSU(3,2)$$A_5:F_5$$A_5:\SD_{16}$

Other information

Möbius function$-1$
Projective image$S_6:S_5$