Properties

Label 8640.ck.72.k1
Order $ 2^{3} \cdot 3 \cdot 5 $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times C_{30}$
Order: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,9,13,8,14)(10,12,11), (2,4)(5,7), (10,11,12), (5,7), (3,6)(5,7)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Ambient group ($G$) information

Description: $A_4\times D_6\times A_5$
Order: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times S_4\times S_5$, of order \(34560\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times C_4\times \GL(3,2)$, of order \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
$W$$C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_{30}$
Normalizer:$S_3\times A_4\times D_{10}$
Normal closure:$C_2^3\times \GL(2,4)$
Core:$C_2^2\times C_6$
Minimal over-subgroups:$A_4\times C_{30}$$C_{15}:C_2^4$$C_{15}:C_2^4$$C_2^2\times D_{30}$
Maximal under-subgroups:$C_2\times C_{30}$$C_2\times C_{30}$$C_2\times C_{30}$$C_2^2\times C_{10}$$C_2^2\times C_6$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$S_3\times A_4\times A_5$