Properties

Label 8640.ck.48.c1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2\times D_{10}$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(1,9,13,8,14)(10,12,11), (2,5,6)(3,4,7)(8,13)(9,14)(10,11,12), (2,4)(3,6)(5,7), (2,6,5)(3,7,4), (10,11,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $A_4\times D_6\times A_5$
Order: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, an A-group, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\times S_4\times S_5$, of order \(34560\)\(\medspace = 2^{8} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times F_5\times \GL(2,3)$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_{30}:D_6$
Normal closure:$C_6\times A_4\times A_5$
Core:$C_6$
Minimal over-subgroups:$C_6\times \GL(2,4)$$C_3\times A_4\times D_{10}$$C_{30}:D_6$
Maximal under-subgroups:$C_3\times C_{30}$$C_3^2\times D_5$$C_3^2\times D_5$$C_3\times D_{10}$$C_3\times D_{10}$$C_3\times D_{10}$$C_6^2$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$S_3\times A_4\times A_5$