Properties

Label 8640.bm.120.ba1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(9,10), (1,4,2), (6,7,8)(11,13,12), (6,8)(12,13), (2,4)(3,5)(6,7,8)(9,10)(11,13,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $A_5:D_6^2$
Order: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\wr C_2.C_2.S_5$
$\operatorname{Aut}(H)$ $D_6\wr C_2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$S_3^2$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_6^2$
Normal closure:$\GL(2,4):D_6$
Core:$C_2$
Minimal over-subgroups:$D_6\times A_5$$C_6:S_3^2$$D_6^2$
Maximal under-subgroups:$C_6\times S_3$$C_6\times S_3$$C_6:S_3$$S_3^2$$S_3^2$$C_2\times D_6$$C_2\times D_6$

Other information

Number of subgroups in this autjugacy class$60$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$S_3^2\times S_5$