Subgroup ($H$) information
| Description: | $\GL(2,4):D_6$ |
| Order: | \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \) |
| Index: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Generators: |
$\langle(2,4,3)(6,8)(11,12), (6,7,8), (9,10), (6,8)(12,13), (11,13,12), (1,2)(3,5)(6,8)(9,10)(12,13)\rangle$
|
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, an A-group, and nonsolvable.
Ambient group ($G$) information
| Description: | $A_5:D_6^2$ |
| Order: | \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, nonsolvable, and rational.
Quotient group ($Q$) structure
| Description: | $C_2^2$ |
| Order: | \(4\)\(\medspace = 2^{2} \) |
| Exponent: | \(2\) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_6\wr C_2.C_2.S_5$ |
| $\operatorname{Aut}(H)$ | $C_2\times S_5\times \AGL(2,3)$ |
| $W$ | $S_3^2\times S_5$, of order \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $2$ |
| Projective image | $S_3^2\times S_5$ |