Properties

Label 8640.bm.4.b1
Order $ 2^{4} \cdot 3^{3} \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,4):D_6$
Order: \(2160\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $\langle(2,4,3)(6,8)(11,12), (6,7,8), (9,10), (6,8)(12,13), (11,13,12), (1,2)(3,5)(6,8)(9,10)(12,13)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $A_5:D_6^2$
Order: \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, nonsolvable, and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6\wr C_2.C_2.S_5$
$\operatorname{Aut}(H)$ $C_2\times S_5\times \AGL(2,3)$
$W$$S_3^2\times S_5$, of order \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$A_5:D_6^2$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$S_3\times D_6\times A_5$$C_6:S_3\times S_5$$C_2\times A_5:S_3^2$
Maximal under-subgroups:$C_6\times \GL(2,4)$$\GL(2,4):S_3$$D_6\times A_5$$D_6\times A_5$$C_6:S_3\times A_4$$C_{30}:D_6$$C_6:S_3^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$S_3^2\times S_5$