Properties

Label 864.683.4.b1.a1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3:C_{72}$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\left(\begin{array}{rr} 8 & 34 \\ 19 & 30 \end{array}\right), \left(\begin{array}{rr} 31 & 35 \\ 19 & 6 \end{array}\right), \left(\begin{array}{rr} 36 & 0 \\ 0 & 36 \end{array}\right), \left(\begin{array}{rr} 4 & 0 \\ 0 & 4 \end{array}\right), \left(\begin{array}{rr} 27 & 0 \\ 0 & 27 \end{array}\right), \left(\begin{array}{rr} 2 & 0 \\ 0 & 2 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $\SL(2,3):C_{36}$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_6\times S_4$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\operatorname{Aut}(H)$ $C_6^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_6^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$$1$
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_{36}$
Normalizer:$C_3:C_{72}$
Normal closure:$\SL(2,3):C_{36}$
Core:$C_{36}$
Minimal over-subgroups:$\SL(2,3):C_{36}$
Maximal under-subgroups:$C_3\times C_{36}$$C_3:C_{24}$$C_{72}$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$-1$
Projective image$S_4$