Properties

Label 864.4673.288.a1.a1
Order $ 3 $
Index $ 2^{5} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(3\)
Generators: $\langle(1,4,3)(2,6,5)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $S_4\times S_3^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian, monomial (hence solvable), and rational.

Quotient group ($Q$) structure

Description: $D_6\times S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(432\)\(\medspace = 2^{4} \cdot 3^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6^2:D_6$
Normalizer:$S_4\times S_3^2$
Complements:$D_6\times S_4$
Minimal over-subgroups:$C_3^2$$C_3^2$$C_3^2$$S_3$$C_6$$C_6$$C_6$$C_6$$S_3$$S_3$$C_6$$S_3$$S_3$$S_3$
Maximal under-subgroups:$C_1$
Autjugate subgroups:864.4673.288.a1.b1

Other information

Möbius function$288$
Projective image$S_4\times S_3^2$