Properties

Label 864.4378.3.a1.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:S_3^2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, b^{2}, c^{6}, b^{3}, d^{2}, c^{3}, d^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_6.D_6^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.C_2^6.C_2^2$
$\operatorname{Aut}(H)$ $C_6^2:D_4^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^2\times D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4:S_3^2$
Normal closure:$C_6.D_6^2$
Core:$D_6.D_6$
Minimal over-subgroups:$C_6.D_6^2$
Maximal under-subgroups:$D_6.D_6$$C_{12}.D_6$$C_{12}:D_6$$D_6:D_6$$C_{12}.D_6$$D_6.D_6$$C_2^2.S_3^2$$D_6.D_6$$C_2^2.S_3^2$$C_4\times S_3^2$$C_{12}.D_6$$D_6:D_6$$D_6.D_6$$C_{12}.D_6$$C_{12}.D_6$$D_4:D_6$$D_4:D_6$
Autjugate subgroups:864.4378.3.a1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_2\times S_3^3$