Properties

Label 864.4010.1.a1
Order $ 2^{5} \cdot 3^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.S_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: $1$
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\left(\begin{array}{rr} 17 & 0 \\ 0 & 17 \end{array}\right), \left(\begin{array}{rr} 25 & 31 \\ 3 & 34 \end{array}\right), \left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 25 & 31 \\ 24 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 24 \\ 0 & 25 \end{array}\right), \left(\begin{array}{rr} 1 & 18 \\ 18 & 1 \end{array}\right), \left(\begin{array}{rr} 19 & 18 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 19 & 0 \\ 0 & 19 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and monomial.

Ambient group ($G$) information

Description: $C_6^2.S_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2.S_4\times S_4$
$\operatorname{Aut}(H)$ $C_3^2.S_4\times S_4$
$W$$C_3^2.S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_6^2.S_4$
Complements:$C_1$
Maximal under-subgroups:$C_6^2.D_6$$C_6^2.A_4$$C_2^3:D_{18}$$C_6^2:D_4$$D_{18}:C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_3^2.S_4$