Subgroup ($H$) information
Description: | $C_6^2.S_4$ |
Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Index: | $1$ |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Generators: |
$\left(\begin{array}{rr}
17 & 0 \\
0 & 17
\end{array}\right), \left(\begin{array}{rr}
25 & 31 \\
3 & 34
\end{array}\right), \left(\begin{array}{rr}
1 & 24 \\
0 & 1
\end{array}\right), \left(\begin{array}{rr}
25 & 31 \\
24 & 11
\end{array}\right), \left(\begin{array}{rr}
1 & 24 \\
0 & 25
\end{array}\right), \left(\begin{array}{rr}
1 & 18 \\
18 & 1
\end{array}\right), \left(\begin{array}{rr}
19 & 18 \\
0 & 19
\end{array}\right), \left(\begin{array}{rr}
19 & 0 \\
0 & 19
\end{array}\right)$
|
Derived length: | $3$ |
The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and monomial.
Ambient group ($G$) information
Description: | $C_6^2.S_4$ |
Order: | \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_1$ |
Order: | $1$ |
Exponent: | $1$ |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $0$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^2.S_4\times S_4$ |
$\operatorname{Aut}(H)$ | $C_3^2.S_4\times S_4$ |
$W$ | $C_3^2.S_4$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Related subgroups
Centralizer: | $C_2^2$ | ||||
Normalizer: | $C_6^2.S_4$ | ||||
Complements: | $C_1$ | ||||
Maximal under-subgroups: | $C_6^2.D_6$ | $C_6^2.A_4$ | $C_2^3:D_{18}$ | $C_6^2:D_4$ | $D_{18}:C_6$ |
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $1$ |
Projective image | $C_3^2.S_4$ |