Properties

Label 860934420.a.27._.A
Order $ 2^{2} \cdot 3^{13} \cdot 5 $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^{12}.(C_5\times A_4)$
Order: \(31886460\)\(\medspace = 2^{2} \cdot 3^{13} \cdot 5 \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Generators: $\langle(28,30,29)(31,32,33)(34,35,36)(37,39,38)(40,42,41)(43,45,44), (16,18,17) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^{15}.(C_5\times A_4)$
Order: \(860934420\)\(\medspace = 2^{2} \cdot 3^{16} \cdot 5 \)
Exponent: \(90\)\(\medspace = 2 \cdot 3^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(220399211520\)\(\medspace = 2^{10} \cdot 3^{16} \cdot 5 \)
$\operatorname{Aut}(H)$ Group of order \(4081466880\)\(\medspace = 2^{9} \cdot 3^{13} \cdot 5 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$27$
Möbius function not computed
Projective image not computed