Properties

Label 84934656.qg.4._.L
Order $ 2^{18} \cdot 3^{4} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{10}.A_4^3:D_6$
Order: \(21233664\)\(\medspace = 2^{18} \cdot 3^{4} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(5,6)(7,8)(29,30)(31,32), (9,11,10,12)(13,16,14,15)(17,18)(19,20)(21,23,22,24) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2^8.(D_4\times A_4^3.S_4)$
Order: \(84934656\)\(\medspace = 2^{20} \cdot 3^{4} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(2717908992\)\(\medspace = 2^{25} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_4^6.C_6^2.C_6^2.C_2^6$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$4$
Möbius function not computed
Projective image not computed