| Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k \mid b^{6}=c^{12}=d^{12}=e^{4}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([24, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 48, 846526489, 934292018, 2624862050, 194, 7273001091, 4060965915, 5470561444, 4382099308, 1525777252, 729626836, 340, 782422853, 2759013821, 951670133, 293166509, 413, 14039903814, 1613608446, 2333782134, 326563854, 7171918855, 5237457439, 2269900855, 178875727, 389217127, 41255551, 42146647, 559, 1696598792, 1214455712, 2586546488, 596372624, 73068584, 120973952, 108764360, 632, 8699581449, 6546977313, 2584189497, 201899601, 434914665, 55250049, 39919833, 12392455690, 627720250, 1032704722, 607077610, 49877122, 151769530, 30539698, 19329754, 7635106, 778, 1018220555, 31850555, 84851795, 430064747, 2654339, 107516315, 8847539, 4427339, 2212067, 4870015500, 2228788260, 3611469948, 1032614004, 312081228, 138260436, 78020436, 39544308, 18317724, 9886260, 924, 1118251021, 118444069, 3022209853, 1580777941, 421158637, 198193093, 105289789, 2580661, 4197517, 645349, 4605880334, 12334913318, 3338703422, 125193686, 193622510, 106349894, 48405758, 34590422, 29853566, 8647790, 1070, 1035141135, 8665325607, 214990911, 86593623, 115568751, 226769031, 28892319, 50181303, 25164495, 12545511, 10818593296, 7361508136, 301397824, 1902331096, 40127728, 216295624, 10032064, 64945624, 10778752, 16236592, 1216, 19855300625, 9784323113, 254555201, 373337, 124529, 322548617, 31265, 45961529, 22649105, 11490569, 11427111954, 10630476330, 6119852034, 1203276474, 412780434, 147571770, 103195242, 32744634, 41409570, 8186346, 1362, 20702822419, 4251087427, 2264474971, 566818675, 301104139, 141704803, 62668987, 25188691, 15667435, 26409535508, 1504935980, 653510660, 2243632700, 1102846868, 375916604, 275711852, 37794140, 44694932, 9448724, 1508, 7466950677, 1244719941, 29310429, 674137845, 6481869, 168534597, 52728381, 27701205, 13182285, 13904358934, 3415281454, 1144984966, 3458145406, 800265430, 619261342, 200066494, 77679838, 20435254, 19420150, 1654, 24944910359, 1006276655, 318753863, 2041044575, 225815159, 431744399, 56453927, 18648767, 28422359, 4662383]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.3, G.5, G.8, G.11, G.13, G.15, G.17, G.19, G.21, G.23]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "c4", "d", "d2", "d4", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2"]);
gap:G := PcGroupCode(5739931770810389584547403072788723935860381689962173788619445390137835214603132467329474677207230548039528739750383041502205864924735205279956064550825110496270521018934298834405586571623903432534620003821087775927832073762651100685249737228539249141222975638642981509405924364782471076717274811156218804716441173027282457569535050224456960721052785666362827579411217462082222868093199111084335679620183193763956366095976740452570802945368795641780793069227088020829229640210417346200480446725643100631963148592295265353282066446517991153850897398956130711488845183790210041200394350070200783113351567433757984937748070291007926363736152322636862237632207425563970931037305368776628720923611924560154548931762321754805314122035102634712515404789375083887295979479922610815304956413817952445067015088913801138974425805836011441937310951806761063565910224765477258221714396761419446826773867745498583812715473028632338632025742164116736362124412110066199276168699350045878537105827015275034379621289717479949067225768016471579773177888245794413849348263995218948979863241645990602207563922059428019185912625563214612483541314797561141875953932938495553056413994730067200999222269683964985480731544018754823218039114256103936280826143056289147232019697439001692717850741291043479527110112819302279845757791224430179222962010506701836030594663075269365883059043190377163265755137094947376390204953095453630009566934974922923196640185408740427994338240171147587415143833096758179154122563926109811028400628191519665515403453502701003342406563134926931395803443872629168790958129152,84934656); a := G.1; b := G.3; c := G.5; d := G.8; e := G.11; f := G.13; g := G.15; h := G.17; i := G.19; j := G.21; k := G.23;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(5739931770810389584547403072788723935860381689962173788619445390137835214603132467329474677207230548039528739750383041502205864924735205279956064550825110496270521018934298834405586571623903432534620003821087775927832073762651100685249737228539249141222975638642981509405924364782471076717274811156218804716441173027282457569535050224456960721052785666362827579411217462082222868093199111084335679620183193763956366095976740452570802945368795641780793069227088020829229640210417346200480446725643100631963148592295265353282066446517991153850897398956130711488845183790210041200394350070200783113351567433757984937748070291007926363736152322636862237632207425563970931037305368776628720923611924560154548931762321754805314122035102634712515404789375083887295979479922610815304956413817952445067015088913801138974425805836011441937310951806761063565910224765477258221714396761419446826773867745498583812715473028632338632025742164116736362124412110066199276168699350045878537105827015275034379621289717479949067225768016471579773177888245794413849348263995218948979863241645990602207563922059428019185912625563214612483541314797561141875953932938495553056413994730067200999222269683964985480731544018754823218039114256103936280826143056289147232019697439001692717850741291043479527110112819302279845757791224430179222962010506701836030594663075269365883059043190377163265755137094947376390204953095453630009566934974922923196640185408740427994338240171147587415143833096758179154122563926109811028400628191519665515403453502701003342406563134926931395803443872629168790958129152,84934656)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.11; f = G.13; g = G.15; h = G.17; i = G.19; j = G.21; k = G.23;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(5739931770810389584547403072788723935860381689962173788619445390137835214603132467329474677207230548039528739750383041502205864924735205279956064550825110496270521018934298834405586571623903432534620003821087775927832073762651100685249737228539249141222975638642981509405924364782471076717274811156218804716441173027282457569535050224456960721052785666362827579411217462082222868093199111084335679620183193763956366095976740452570802945368795641780793069227088020829229640210417346200480446725643100631963148592295265353282066446517991153850897398956130711488845183790210041200394350070200783113351567433757984937748070291007926363736152322636862237632207425563970931037305368776628720923611924560154548931762321754805314122035102634712515404789375083887295979479922610815304956413817952445067015088913801138974425805836011441937310951806761063565910224765477258221714396761419446826773867745498583812715473028632338632025742164116736362124412110066199276168699350045878537105827015275034379621289717479949067225768016471579773177888245794413849348263995218948979863241645990602207563922059428019185912625563214612483541314797561141875953932938495553056413994730067200999222269683964985480731544018754823218039114256103936280826143056289147232019697439001692717850741291043479527110112819302279845757791224430179222962010506701836030594663075269365883059043190377163265755137094947376390204953095453630009566934974922923196640185408740427994338240171147587415143833096758179154122563926109811028400628191519665515403453502701003342406563134926931395803443872629168790958129152,84934656)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.11; f = G.13; g = G.15; h = G.17; i = G.19; j = G.21; k = G.23;
|
| Permutation group: | Degree $36$
$\langle(1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27)(22,29,25,24,32,28), (1,34,7,2,33,8)(3,36,5,4,35,6)(9,24,10,23)(11,21,12,22)(13,26,16,27,14,25,15,28)(17,30,20,32,18,29,19,31), (1,11,25,35,17,23,5,13,32,3,9,27,34,19,21,8,15,30,2,12,26,36,18,24,6,14,31,4,10,28,33,20,22,7,16,29) >;
gap:G := Group( (1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27)(22,29,25,24,32,28), (1,34,7,2,33,8)(3,36,5,4,35,6)(9,24,10,23)(11,21,12,22)(13,26,16,27,14,25,15,28)(17,30,20,32,18,29,19,31), (1,11,25,35,17,23,5,13,32,3,9,27,34,19,21,8,15,30,2,12,26,36,18,24,6,14,31,4,10,28,33,20,22,7,16,29) );
sage:G = PermutationGroup(['(1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27)(22,29,25,24,32,28)', '(1,34,7,2,33,8)(3,36,5,4,35,6)(9,24,10,23)(11,21,12,22)(13,26,16,27,14,25,15,28)(17,30,20,32,18,29,19,31)', '(1,11,25,35,17,23,5,13,32,3,9,27,34,19,21,8,15,30,2,12,26,36,18,24,6,14,31,4,10,28,33,20,22,7,16,29)'])
|
| Transitive group: |
36T77156 |
|
|
|
more information |
| Direct product: |
not computed |
| Semidirect product: |
not computed |
| Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
| Possibly split product: |
$C_4^7$ . $(C_6^3.S_4)$ |
$C_4^9$ . $(C_3^3:D_6)$ (3) |
$C_2^8$ . $(D_4\times A_4^3.S_4)$ |
$C_4^8$ . $(C_3\wr S_3\times D_4)$ |
all 91 |
Elements of the group are displayed as permutations of degree 36.
The $3952 \times 3952$ character table is not available for this group.
The $2868 \times 2868$ rational character table is not available for this group.