Properties

Label 84934656.qg
Order \( 2^{20} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{25} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27)(22,29,25,24,32,28), (1,34,7,2,33,8)(3,36,5,4,35,6)(9,24,10,23)(11,21,12,22)(13,26,16,27,14,25,15,28)(17,30,20,32,18,29,19,31), (1,11,25,35,17,23,5,13,32,3,9,27,34,19,21,8,15,30,2,12,26,36,18,24,6,14,31,4,10,28,33,20,22,7,16,29) >;
 
Copy content gap:G := Group( (1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27)(22,29,25,24,32,28), (1,34,7,2,33,8)(3,36,5,4,35,6)(9,24,10,23)(11,21,12,22)(13,26,16,27,14,25,15,28)(17,30,20,32,18,29,19,31), (1,11,25,35,17,23,5,13,32,3,9,27,34,19,21,8,15,30,2,12,26,36,18,24,6,14,31,4,10,28,33,20,22,7,16,29) );
 
Copy content sage:G = PermutationGroup(['(1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27)(22,29,25,24,32,28)', '(1,34,7,2,33,8)(3,36,5,4,35,6)(9,24,10,23)(11,21,12,22)(13,26,16,27,14,25,15,28)(17,30,20,32,18,29,19,31)', '(1,11,25,35,17,23,5,13,32,3,9,27,34,19,21,8,15,30,2,12,26,36,18,24,6,14,31,4,10,28,33,20,22,7,16,29)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5739931770810389584547403072788723935860381689962173788619445390137835214603132467329474677207230548039528739750383041502205864924735205279956064550825110496270521018934298834405586571623903432534620003821087775927832073762651100685249737228539249141222975638642981509405924364782471076717274811156218804716441173027282457569535050224456960721052785666362827579411217462082222868093199111084335679620183193763956366095976740452570802945368795641780793069227088020829229640210417346200480446725643100631963148592295265353282066446517991153850897398956130711488845183790210041200394350070200783113351567433757984937748070291007926363736152322636862237632207425563970931037305368776628720923611924560154548931762321754805314122035102634712515404789375083887295979479922610815304956413817952445067015088913801138974425805836011441937310951806761063565910224765477258221714396761419446826773867745498583812715473028632338632025742164116736362124412110066199276168699350045878537105827015275034379621289717479949067225768016471579773177888245794413849348263995218948979863241645990602207563922059428019185912625563214612483541314797561141875953932938495553056413994730067200999222269683964985480731544018754823218039114256103936280826143056289147232019697439001692717850741291043479527110112819302279845757791224430179222962010506701836030594663075269365883059043190377163265755137094947376390204953095453630009566934974922923196640185408740427994338240171147587415143833096758179154122563926109811028400628191519665515403453502701003342406563134926931395803443872629168790958129152,84934656)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.11; f = G.13; g = G.15; h = G.17; i = G.19; j = G.21; k = G.23;
 

Group information

Description:$C_2^8.(D_4\times A_4^3.S_4)$
Order: \(84934656\)\(\medspace = 2^{20} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2717908992\)\(\medspace = 2^{25} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 20, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24 36
Elements 1 304127 109664 809984 17363872 4128768 2359296 20930560 11796480 22413312 4718592 84934656
Conjugacy classes   1 47 10 1374 238 280 2 1792 6 200 2 3952
Divisions 1 47 6 1374 130 280 1 925 3 100 1 2868
Autjugacy classes 1 33 6 347 91 52 1 356 2 29 1 919

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid b^{6}=c^{12}=d^{12}=e^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([24, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 48, 846526489, 934292018, 2624862050, 194, 7273001091, 4060965915, 5470561444, 4382099308, 1525777252, 729626836, 340, 782422853, 2759013821, 951670133, 293166509, 413, 14039903814, 1613608446, 2333782134, 326563854, 7171918855, 5237457439, 2269900855, 178875727, 389217127, 41255551, 42146647, 559, 1696598792, 1214455712, 2586546488, 596372624, 73068584, 120973952, 108764360, 632, 8699581449, 6546977313, 2584189497, 201899601, 434914665, 55250049, 39919833, 12392455690, 627720250, 1032704722, 607077610, 49877122, 151769530, 30539698, 19329754, 7635106, 778, 1018220555, 31850555, 84851795, 430064747, 2654339, 107516315, 8847539, 4427339, 2212067, 4870015500, 2228788260, 3611469948, 1032614004, 312081228, 138260436, 78020436, 39544308, 18317724, 9886260, 924, 1118251021, 118444069, 3022209853, 1580777941, 421158637, 198193093, 105289789, 2580661, 4197517, 645349, 4605880334, 12334913318, 3338703422, 125193686, 193622510, 106349894, 48405758, 34590422, 29853566, 8647790, 1070, 1035141135, 8665325607, 214990911, 86593623, 115568751, 226769031, 28892319, 50181303, 25164495, 12545511, 10818593296, 7361508136, 301397824, 1902331096, 40127728, 216295624, 10032064, 64945624, 10778752, 16236592, 1216, 19855300625, 9784323113, 254555201, 373337, 124529, 322548617, 31265, 45961529, 22649105, 11490569, 11427111954, 10630476330, 6119852034, 1203276474, 412780434, 147571770, 103195242, 32744634, 41409570, 8186346, 1362, 20702822419, 4251087427, 2264474971, 566818675, 301104139, 141704803, 62668987, 25188691, 15667435, 26409535508, 1504935980, 653510660, 2243632700, 1102846868, 375916604, 275711852, 37794140, 44694932, 9448724, 1508, 7466950677, 1244719941, 29310429, 674137845, 6481869, 168534597, 52728381, 27701205, 13182285, 13904358934, 3415281454, 1144984966, 3458145406, 800265430, 619261342, 200066494, 77679838, 20435254, 19420150, 1654, 24944910359, 1006276655, 318753863, 2041044575, 225815159, 431744399, 56453927, 18648767, 28422359, 4662383]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.3, G.5, G.8, G.11, G.13, G.15, G.17, G.19, G.21, G.23]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "c4", "d", "d2", "d4", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2"]);
 
Copy content gap:G := PcGroupCode(5739931770810389584547403072788723935860381689962173788619445390137835214603132467329474677207230548039528739750383041502205864924735205279956064550825110496270521018934298834405586571623903432534620003821087775927832073762651100685249737228539249141222975638642981509405924364782471076717274811156218804716441173027282457569535050224456960721052785666362827579411217462082222868093199111084335679620183193763956366095976740452570802945368795641780793069227088020829229640210417346200480446725643100631963148592295265353282066446517991153850897398956130711488845183790210041200394350070200783113351567433757984937748070291007926363736152322636862237632207425563970931037305368776628720923611924560154548931762321754805314122035102634712515404789375083887295979479922610815304956413817952445067015088913801138974425805836011441937310951806761063565910224765477258221714396761419446826773867745498583812715473028632338632025742164116736362124412110066199276168699350045878537105827015275034379621289717479949067225768016471579773177888245794413849348263995218948979863241645990602207563922059428019185912625563214612483541314797561141875953932938495553056413994730067200999222269683964985480731544018754823218039114256103936280826143056289147232019697439001692717850741291043479527110112819302279845757791224430179222962010506701836030594663075269365883059043190377163265755137094947376390204953095453630009566934974922923196640185408740427994338240171147587415143833096758179154122563926109811028400628191519665515403453502701003342406563134926931395803443872629168790958129152,84934656); a := G.1; b := G.3; c := G.5; d := G.8; e := G.11; f := G.13; g := G.15; h := G.17; i := G.19; j := G.21; k := G.23;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5739931770810389584547403072788723935860381689962173788619445390137835214603132467329474677207230548039528739750383041502205864924735205279956064550825110496270521018934298834405586571623903432534620003821087775927832073762651100685249737228539249141222975638642981509405924364782471076717274811156218804716441173027282457569535050224456960721052785666362827579411217462082222868093199111084335679620183193763956366095976740452570802945368795641780793069227088020829229640210417346200480446725643100631963148592295265353282066446517991153850897398956130711488845183790210041200394350070200783113351567433757984937748070291007926363736152322636862237632207425563970931037305368776628720923611924560154548931762321754805314122035102634712515404789375083887295979479922610815304956413817952445067015088913801138974425805836011441937310951806761063565910224765477258221714396761419446826773867745498583812715473028632338632025742164116736362124412110066199276168699350045878537105827015275034379621289717479949067225768016471579773177888245794413849348263995218948979863241645990602207563922059428019185912625563214612483541314797561141875953932938495553056413994730067200999222269683964985480731544018754823218039114256103936280826143056289147232019697439001692717850741291043479527110112819302279845757791224430179222962010506701836030594663075269365883059043190377163265755137094947376390204953095453630009566934974922923196640185408740427994338240171147587415143833096758179154122563926109811028400628191519665515403453502701003342406563134926931395803443872629168790958129152,84934656)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.11; f = G.13; g = G.15; h = G.17; i = G.19; j = G.21; k = G.23;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(5739931770810389584547403072788723935860381689962173788619445390137835214603132467329474677207230548039528739750383041502205864924735205279956064550825110496270521018934298834405586571623903432534620003821087775927832073762651100685249737228539249141222975638642981509405924364782471076717274811156218804716441173027282457569535050224456960721052785666362827579411217462082222868093199111084335679620183193763956366095976740452570802945368795641780793069227088020829229640210417346200480446725643100631963148592295265353282066446517991153850897398956130711488845183790210041200394350070200783113351567433757984937748070291007926363736152322636862237632207425563970931037305368776628720923611924560154548931762321754805314122035102634712515404789375083887295979479922610815304956413817952445067015088913801138974425805836011441937310951806761063565910224765477258221714396761419446826773867745498583812715473028632338632025742164116736362124412110066199276168699350045878537105827015275034379621289717479949067225768016471579773177888245794413849348263995218948979863241645990602207563922059428019185912625563214612483541314797561141875953932938495553056413994730067200999222269683964985480731544018754823218039114256103936280826143056289147232019697439001692717850741291043479527110112819302279845757791224430179222962010506701836030594663075269365883059043190377163265755137094947376390204953095453630009566934974922923196640185408740427994338240171147587415143833096758179154122563926109811028400628191519665515403453502701003342406563134926931395803443872629168790958129152,84934656)'); a = G.1; b = G.3; c = G.5; d = G.8; e = G.11; f = G.13; g = G.15; h = G.17; i = G.19; j = G.21; k = G.23;
 
Permutation group:Degree $36$ $\langle(1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27)(22,29,25,24,32,28), (1,34,7,2,33,8)(3,36,5,4,35,6)(9,24,10,23)(11,21,12,22)(13,26,16,27,14,25,15,28)(17,30,20,32,18,29,19,31), (1,11,25,35,17,23,5,13,32,3,9,27,34,19,21,8,15,30,2,12,26,36,18,24,6,14,31,4,10,28,33,20,22,7,16,29) >;
 
Copy content gap:G := Group( (1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27)(22,29,25,24,32,28), (1,34,7,2,33,8)(3,36,5,4,35,6)(9,24,10,23)(11,21,12,22)(13,26,16,27,14,25,15,28)(17,30,20,32,18,29,19,31), (1,11,25,35,17,23,5,13,32,3,9,27,34,19,21,8,15,30,2,12,26,36,18,24,6,14,31,4,10,28,33,20,22,7,16,29) );
 
Copy content sage:G = PermutationGroup(['(1,35,5,3,33,8)(2,36,6,4,34,7)(9,12)(10,11)(13,14)(17,20)(18,19)(21,30,26,23,31,27)(22,29,25,24,32,28)', '(1,34,7,2,33,8)(3,36,5,4,35,6)(9,24,10,23)(11,21,12,22)(13,26,16,27,14,25,15,28)(17,30,20,32,18,29,19,31)', '(1,11,25,35,17,23,5,13,32,3,9,27,34,19,21,8,15,30,2,12,26,36,18,24,6,14,31,4,10,28,33,20,22,7,16,29)'])
 
Transitive group: 36T77156 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_4^7$ . $(C_6^3.S_4)$ $C_4^9$ . $(C_3^3:D_6)$ (3) $C_2^8$ . $(D_4\times A_4^3.S_4)$ $C_4^8$ . $(C_3\wr S_3\times D_4)$ all 91

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{6} \simeq C_{2}^{3} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{4} \times C_{4}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 122 normal subgroups (82 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_4^6.C_{12}^2.C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^9$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3952 \times 3952$ character table is not available for this group.

Rational character table

The $2868 \times 2868$ rational character table is not available for this group.