Properties

Label 8400.i.84.d1.b1
Order $ 2^{2} \cdot 5^{2} $
Index $ 2^{2} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_{10}$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 279 \end{array}\right), \left(\begin{array}{rr} 377 & 0 \\ 0 & 354 \end{array}\right), \left(\begin{array}{rr} 0 & 2 \\ 211 & 0 \end{array}\right), \left(\begin{array}{rr} 142 & 0 \\ 0 & 169 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $D_{420}:C_{10}$
Order: \(8400\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{210}.C_6.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$D_{10}$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_{20}$
Normalizer:$D_{20}:C_{10}$
Normal closure:$C_5\times D_{210}$
Core:$C_5\times C_{10}$
Minimal over-subgroups:$C_5\times D_{70}$$C_5\times D_{30}$$C_{10}\wr C_2$$D_5\times C_{20}$$C_5\times D_{20}$
Maximal under-subgroups:$C_5\times C_{10}$$C_5\times D_5$$C_2\times C_{10}$$D_{10}$
Autjugate subgroups:8400.i.84.d1.a1

Other information

Number of subgroups in this conjugacy class$21$
Möbius function$2$
Projective image$C_2\times D_{210}$