Properties

Label 8400.i.8.a1.a1
Order $ 2 \cdot 3 \cdot 5^{2} \cdot 7 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times C_{210}$
Order: \(1050\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(210\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 1 & 0 \\ 0 & 279 \end{array}\right), \left(\begin{array}{rr} 316 & 0 \\ 0 & 4 \end{array}\right), \left(\begin{array}{rr} 33 & 0 \\ 0 & 370 \end{array}\right), \left(\begin{array}{rr} 48 & 0 \\ 0 & 307 \end{array}\right), \left(\begin{array}{rr} 79 & 0 \\ 0 & 16 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the socle (hence characteristic and normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 5$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_{420}:C_{10}$
Order: \(8400\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \)
Exponent: \(420\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{210}.C_6.C_2^5.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_6\times \GL(2,5)$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{10}\times C_{420}$
Normalizer:$D_{420}:C_{10}$
Minimal over-subgroups:$C_{10}\times C_{210}$$C_5\times D_{210}$$C_5\times D_{210}$$C_5\times C_{420}$$C_5\times C_{420}$$C_{105}:C_{20}$$C_{105}:C_{20}$
Maximal under-subgroups:$C_5\times C_{105}$$C_5\times C_{70}$$C_{210}$$C_{210}$$C_{210}$$C_{210}$$C_5\times C_{30}$

Other information

Möbius function$-8$
Projective image$C_2\times D_{210}$